Project

General

Profile

Statistics
| Revision:

root / trunk / scripts / codemirror / mode / stex / index.html @ 229

History | View | Annotate | Download (3.53 KB)

1 216 soeren
<!doctype html>
2
<html>
3
  <head>
4
    <title>CodeMirror: sTeX mode</title>
5
    <link rel="stylesheet" href="../../lib/codemirror.css">
6
    <script src="../../lib/codemirror.js"></script>
7
    <script src="stex.js"></script>
8
    <style>.CodeMirror {background: #f8f8f8;}</style>
9
    <link rel="stylesheet" href="../../doc/docs.css">
10
  </head>
11
  <body>
12
    <h1>CodeMirror: sTeX mode</h1>
13
     <form><textarea id="code" name="code">
14
\begin{module}[id=bbt-size]
15
\importmodule[balanced-binary-trees]{balanced-binary-trees}
16
\importmodule[\KWARCslides{dmath/en/cardinality}]{cardinality}
17
18
\begin{frame}
19
  \frametitle{Size Lemma for Balanced Trees}
20
  \begin{itemize}
21
  \item
22
    \begin{assertion}[id=size-lemma,type=lemma]
23
    Let $G=\tup{V,E}$ be a \termref[cd=binary-trees]{balanced binary tree}
24
    of \termref[cd=graph-depth,name=vertex-depth]{depth}$n>i$, then the set
25
     $\defeq{\livar{V}i}{\setst{\inset{v}{V}}{\gdepth{v} = i}}$ of
26
    \termref[cd=graphs-intro,name=node]{nodes} at
27
    \termref[cd=graph-depth,name=vertex-depth]{depth} $i$ has
28
    \termref[cd=cardinality,name=cardinality]{cardinality} $\power2i$.
29
   \end{assertion}
30
  \item
31
    \begin{sproof}[id=size-lemma-pf,proofend=,for=size-lemma]{via induction over the depth $i$.}
32
      \begin{spfcases}{We have to consider two cases}
33
        \begin{spfcase}{$i=0$}
34
          \begin{spfstep}[display=flow]
35
            then $\livar{V}i=\set{\livar{v}r}$, where $\livar{v}r$ is the root, so
36
            $\eq{\card{\livar{V}0},\card{\set{\livar{v}r}},1,\power20}$.
37
          \end{spfstep}
38
        \end{spfcase}
39
        \begin{spfcase}{$i>0$}
40
          \begin{spfstep}[display=flow]
41
           then $\livar{V}{i-1}$ contains $\power2{i-1}$ vertexes
42
           \begin{justification}[method=byIH](IH)\end{justification}
43
          \end{spfstep}
44
          \begin{spfstep}
45
           By the \begin{justification}[method=byDef]definition of a binary
46
              tree\end{justification}, each $\inset{v}{\livar{V}{i-1}}$ is a leaf or has
47
            two children that are at depth $i$.
48
          \end{spfstep}
49
          \begin{spfstep}
50
           As $G$ is \termref[cd=balanced-binary-trees,name=balanced-binary-tree]{balanced} and $\gdepth{G}=n>i$, $\livar{V}{i-1}$ cannot contain
51
            leaves.
52
          \end{spfstep}
53
          \begin{spfstep}[type=conclusion]
54
           Thus $\eq{\card{\livar{V}i},{\atimes[cdot]{2,\card{\livar{V}{i-1}}}},{\atimes[cdot]{2,\power2{i-1}}},\power2i}$.
55
          \end{spfstep}
56
        \end{spfcase}
57
      \end{spfcases}
58
    \end{sproof}
59
  \item
60
    \begin{assertion}[id=fbbt,type=corollary]
61
      A fully balanced tree of depth $d$ has $\power2{d+1}-1$ nodes.
62
    \end{assertion}
63
  \item
64
      \begin{sproof}[for=fbbt,id=fbbt-pf]{}
65
        \begin{spfstep}
66
          Let $\defeq{G}{\tup{V,E}}$ be a fully balanced tree
67
        \end{spfstep}
68
        \begin{spfstep}
69
          Then $\card{V}=\Sumfromto{i}1d{\power2i}= \power2{d+1}-1$.
70
        \end{spfstep}
71
      \end{sproof}
72
    \end{itemize}
73
  \end{frame}
74
\begin{note}
75
  \begin{omtext}[type=conclusion,for=binary-tree]
76
    This shows that balanced binary trees grow in breadth very quickly, a consequence of
77
    this is that they are very shallow (and this compute very fast), which is the essence of
78
    the next result.
79
  \end{omtext}
80
\end{note}
81
\end{module}
82
83
%%% Local Variables:
84
%%% mode: LaTeX
85
%%% TeX-master: "all"
86
%%% End: \end{document}
87
</textarea></form>
88
    <script>
89
      var editor = CodeMirror.fromTextArea(document.getElementById("code"), {});
90
    </script>
91
92 229 soeren
    <p><strong>MIME types defined:</strong> <code>text/x-stex</code>.</p>
93 216 soeren
94
  </body>
95
</html>