root / trunk / scripts / codemirror / mode / stex / index.html @ 229
History | View | Annotate | Download (3.53 KB)
1 |
<!doctype html>
|
---|---|
2 |
<html>
|
3 |
<head>
|
4 |
<title>CodeMirror: sTeX mode</title> |
5 |
<link rel="stylesheet" href="../../lib/codemirror.css"> |
6 |
<script src="../../lib/codemirror.js"></script> |
7 |
<script src="stex.js"></script> |
8 |
<style>.CodeMirror {background: #f8f8f8;}</style> |
9 |
<link rel="stylesheet" href="../../doc/docs.css"> |
10 |
</head>
|
11 |
<body>
|
12 |
<h1>CodeMirror: sTeX mode</h1> |
13 |
<form><textarea id="code" name="code"> |
14 |
\begin{module}[id=bbt-size] |
15 |
\importmodule[balanced-binary-trees]{balanced-binary-trees} |
16 |
\importmodule[\KWARCslides{dmath/en/cardinality}]{cardinality} |
17 |
|
18 |
\begin{frame} |
19 |
\frametitle{Size Lemma for Balanced Trees} |
20 |
\begin{itemize} |
21 |
\item |
22 |
\begin{assertion}[id=size-lemma,type=lemma] |
23 |
Let $G=\tup{V,E}$ be a \termref[cd=binary-trees]{balanced binary tree} |
24 |
of \termref[cd=graph-depth,name=vertex-depth]{depth}$n>i$, then the set
|
25 |
$\defeq{\livar{V}i}{\setst{\inset{v}{V}}{\gdepth{v} = i}}$ of |
26 |
\termref[cd=graphs-intro,name=node]{nodes} at |
27 |
\termref[cd=graph-depth,name=vertex-depth]{depth} $i$ has |
28 |
\termref[cd=cardinality,name=cardinality]{cardinality} $\power2i$. |
29 |
\end{assertion} |
30 |
\item |
31 |
\begin{sproof}[id=size-lemma-pf,proofend=,for=size-lemma]{via induction over the depth $i$.} |
32 |
\begin{spfcases}{We have to consider two cases} |
33 |
\begin{spfcase}{$i=0$} |
34 |
\begin{spfstep}[display=flow] |
35 |
then $\livar{V}i=\set{\livar{v}r}$, where $\livar{v}r$ is the root, so |
36 |
$\eq{\card{\livar{V}0},\card{\set{\livar{v}r}},1,\power20}$. |
37 |
\end{spfstep} |
38 |
\end{spfcase} |
39 |
\begin{spfcase}{$i>0$}
|
40 |
\begin{spfstep}[display=flow] |
41 |
then $\livar{V}{i-1}$ contains $\power2{i-1}$ vertexes |
42 |
\begin{justification}[method=byIH](IH)\end{justification} |
43 |
\end{spfstep} |
44 |
\begin{spfstep} |
45 |
By the \begin{justification}[method=byDef]definition of a binary |
46 |
tree\end{justification}, each $\inset{v}{\livar{V}{i-1}}$ is a leaf or has |
47 |
two children that are at depth $i$. |
48 |
\end{spfstep} |
49 |
\begin{spfstep} |
50 |
As $G$ is \termref[cd=balanced-binary-trees,name=balanced-binary-tree]{balanced} and $\gdepth{G}=n>i$, $\livar{V}{i-1}$ cannot contain
|
51 |
leaves. |
52 |
\end{spfstep} |
53 |
\begin{spfstep}[type=conclusion] |
54 |
Thus $\eq{\card{\livar{V}i},{\atimes[cdot]{2,\card{\livar{V}{i-1}}}},{\atimes[cdot]{2,\power2{i-1}}},\power2i}$. |
55 |
\end{spfstep} |
56 |
\end{spfcase} |
57 |
\end{spfcases} |
58 |
\end{sproof} |
59 |
\item |
60 |
\begin{assertion}[id=fbbt,type=corollary] |
61 |
A fully balanced tree of depth $d$ has $\power2{d+1}-1$ nodes. |
62 |
\end{assertion} |
63 |
\item |
64 |
\begin{sproof}[for=fbbt,id=fbbt-pf]{} |
65 |
\begin{spfstep} |
66 |
Let $\defeq{G}{\tup{V,E}}$ be a fully balanced tree |
67 |
\end{spfstep} |
68 |
\begin{spfstep} |
69 |
Then $\card{V}=\Sumfromto{i}1d{\power2i}= \power2{d+1}-1$. |
70 |
\end{spfstep} |
71 |
\end{sproof} |
72 |
\end{itemize} |
73 |
\end{frame} |
74 |
\begin{note} |
75 |
\begin{omtext}[type=conclusion,for=binary-tree] |
76 |
This shows that balanced binary trees grow in breadth very quickly, a consequence of |
77 |
this is that they are very shallow (and this compute very fast), which is the essence of |
78 |
the next result. |
79 |
\end{omtext} |
80 |
\end{note} |
81 |
\end{module} |
82 |
|
83 |
%%% Local Variables: |
84 |
%%% mode: LaTeX |
85 |
%%% TeX-master: "all" |
86 |
%%% End: \end{document} |
87 |
</textarea></form> |
88 |
<script>
|
89 |
var editor = CodeMirror.fromTextArea(document.getElementById("code"), {});
|
90 |
</script>
|
91 |
|
92 |
<p><strong>MIME types defined:</strong> <code>text/x-stex</code>.</p> |
93 |
|
94 |
</body>
|
95 |
</html>
|